3D Scanning Technology Captures All Details in Forensic Investigations

3D Scanning Technology Captures All Details in Forensic Investigations

What comes to your mind when criminal forensics and evidence identification are mentioned?

Is it the scene where police officers take photographs at the crime scene and identify the position of the victim?

Or is it like what is described in TV dramas where forensic experts conduct various tests before eventually finding the key evidence to crack the case?


It is a common impression that forensic analysis is a very tedious job entailing evidence collection, identification and discrimination using various instruments, evidence preservation and archive. All these procedures are time and labor consuming and may even result in loss of evidence in case of misoperations.

3D scanning technology stands to alleviate some of the burdens of these procedures.

In areas of material evidence management, footprint analysis, traumatic identification and auricular injuries identification, 3D scanning technology proves to have a great potential for application.


Case 1 Material Evidence Management

Recently, Jiangxing courts have pioneered the use of digital intelligent material evidence management mode. Using artificial intelligence (AI), judicial blockchain, 3D data and modeling and other technologies, the court constructed a material evidence management platform where 3D scanning modeling becomes a new approach to collection and storage of material evidence data. SCANTECH’s iReal color 3D scanner and PRINCE handheld 3D scanner were presented in the technical demonstration concerning the construction of the system.

iReal fa yuan ying yong

iReal fa yuan ying yong (3)

Recent years have witnessed frequent occurrences of intellectual property. Compared with regular civil cases, intellectual property cases tend to involve large amounts of material evidence, and the accumulation of large bodies of evidence over time could easily overwhelm evidence storage warehouses.

Digital intelligent material evidence management can effectively tackle the pain points relating to evidence storage, management and search. SCANTECH 3D scanners can be applied to generate 3D models of material evidence, and material evidence can then be uploaded onto the intelligent material evidence management platform, allowing litigants to take back their material evidence for preservation and present them later if needed.

SCANTECH 3D laser scanners have significant advantages in terms of material evidence scanning: high accuracy (maximum accuracy 0.02mm) and high fineness (maximum resolution 0.010 mm) of data that can be easily obtained without the need to perform surface treatment even for complicated objects involving reflective or black surface; high data completeness and environmental adaptability (deployable in both indoor and outdoor environments).  In addition, SCANTECH’s unique mapping technology matches the high-accuracy model obtained using laser scanning with HD photos taken by SLR cameras (5000w pixels), eventually generating high-accuracy color 3D models with clear textures.

iReal 3D color scanner, on the other hand, is more effective in scanning material evidence involving a large plenitude of geometric features and matte textures. No markers are needed and the device is highly portable and easy to operate. High-definition color grains can be obtained to satisfy courts’ need for color data with respect to a part of material evidence.

Statistics show that over the 1-month pilot running period of the material evidence management platform, 5 material evidence warehouses covering a total area of more than 500 square meters have been emptied out in Jiaxing City, releasing over 3,000 pieces of evidence in stock.


Case 2 Footprint analysis

Footprint collection and analysis is one of the major approaches that the police adopt in investigations. Behind an unremarkable footprint may be the information of a suspect’s gender, age, body shape and walking signature.

In traditional footprint extraction, the plaster mold casting method is applied. First, a 2-4 cm high enclosure is first erected around a footprint. Then, plaster slurry is poured from the lower part of the footprint; after the plaster is solidified, the mold is taken out, resined in water and let air dry. The result is a plaster footprint mold.

Such a method entails many drawbacks. It usually takes more than 30 minutes to cast a plaster mold. Once extraction fails, not only cannot footprint mold be obtained, but the footprint information on the scene would be damaged without further remedial possibilities. An abundance of footprint information can often be found on areas of snow, sand and dust. However, it would be extremely difficult to extract footprint on these materials using the plaster casting method.

3D scanning provides an entirely new approach to extracting footprints. SCANTECH offers two sets of solutions for footprint extraction: the iReal texture capturing without markers and the handheld high-accuracy 3D laser scanning solution. Both solutions leave the original morphology of footprints untouched (laser scanners rely on magnetic markers that are attached around a footprint, and thus there is no need to stick markers or physically contact any part of a footprint), and data can be easily obtained even from special materials like snow, sand and dust.

zu ji mo xingPlaster molding VS 3D scanning for footprint modeling

The solution of handheld 3D laser scanning has advantages like high data completeness, accuracy (a maximum accuracy of 0.02mm), and fineness (a maximum fineness of 0.010 mm, thinner than a thread of hair). Even the tiny, narrow grooves on a footprint can be clearly scanned without the slightest error; the solution also has high applicability across various complicated lighting environments (both indoor and outdoor). zu ji 3D shu ju

foot tracker 3D date (2)

The solution of handheld 3D laser scanning has advantages like high data completeness, accuracy (a maximum accuracy of 0.02mm) and fineness (a maximum fineness of 0.010 mm, thinner than a thread of hair). Even the tiny, narrow grooves on a footprint can be clearly scanned without the slightest error; the solution also has high applicability across various complicated lighting environments (both indoor and outdoor).

san wei sao miao zu ji

zu ji 3D shu ju 4Data obtained by KSCAN 3D scanner

zu ji 3D shu ju 43D printed model

With the availability of a high-accuracy model, you can print the footprint at the crime scene using a high-precision, industrial 3D printer for evidence preservation and examination, or you can also measure size-related parameters (e.g., the lowest point of the sole or the width of the foot) to assist with determining the sex, age, body shape and walking characteristics of the suspect. Additionally, the model can also be zoomed in and out from different angles for better observation and overlapping comparison, providing more information for investigators.

zu ji chi cun (2)

zu ji chi cun

Footprint 3D data


Case 3 Trauma identification

3D scanning also plays a significant role in trauma identification.

iReal also as a 3D body scanner, is applicable not only to “objects” but also to “humans beings” (for earlier reports on medical scanning of human bodies, you can read the article of Comprehensive 3D Solution for Health Care. In medical care settings, patients’ physical data are needed for diagnosis and treatment; comparatively, trauma data is required in forensic investigations for case discrimination and analysis.

Traditional trauma identification still relies on measuring tapes and photography. However, results obtained by measuring tapes may involve large errors when it comes to irregular traumatic shapes while photos can only deliver 2D images without further information.

iReal color 3D scanner is able to rapidly measure 3D information of a wound like its surface area, circumference and angles that facilitate accurate measurement and evaluation of traumas.

In the meantime, iReal 3D scanner can also be operated under the invisible light mode to allow a safe and comfortable scanning process that lasts no more than 30 seconds. All these features can effectively increase the efficiency of case investigation and ensure the victim can seek prompt medical care after identification.

Case 4 Auricular injuries identification

For a long time, auricular injury identification represents one of the most daunting tasks for forensic identification.

Compared with other traumas, auricular injuries have their peculiarities. In cases involving auricular injuries, the ratio of the area of auricular injury to the overall auricular area should be measured. Due to the complex shape of the auricle and irregular edges of the defected area, it may be impossible to measure the original edges of an auricle, causing great difficulty for forensic identification.

Presently, there is no effective way for forensic identification of auricular injuries. Commonly used approaches include counting grids after enlarging the injury area or calculation by scale paper, both of which are time and labor-consuming and entail great errors.

Working with Anzheng, SCANTECH developed a 3D intelligent forensic identification system (forensic identification not only addresses “corpse identification” which is commonly familiar to the general public but also includes “injury identification on living bodies”). The system pioneers a 3D scanning-based auricular injuries identification scheme: iReal 3D scanner is first applied to scan auricular data, then the intelligent identification technology proprietarily developed by Anzheng is utilized to rapidly identify and split the 3D auricle, which is then compared with the auricle on the other side, followed by an automatic calculation of the ratio of the injured area to the overall auricular area.

zu ji chi cun

The entire calculation process is free of human interference, avoiding errors caused by human factors and significantly increasing the accuracy of auricular injury identification.


Case 5 More Practices and Explorations

Using 3D digitalized approaches to capture on-spot information, analyzing and measuring 3D data at crime scenes in a more accurate and comprehensive manner, and turning them into presentable materials on court constitute an entirely new, revolutionary solution.

The 3D intelligent forensic identification system co-developed by SCANTECH and Anzheng has been piloted in Anhui and Zhejiang provinces. Amid its exploration in forensic identification and evidence extraction, the system has gradually earned trust from judicial investigators and forensic experts.

iReal gong an zhan hui (2)

Take the use case of crime scene recording, for example. Anzheng Tech used SCANTECH’s iReal 3D scanner to assist with recording the 3D data of crime scenes, generating data for an intuitive virtual scene for future analysis. Using the software, traces and impact points can be intuitively marked, distance data like lengths and widths at crime scenes are visible and track analysis can be conducted to help investigators recover the very process of crimes and solve cases.

 Crime scene

3D scanning-based model simulating the crime scene


Regardless of objects, humans or traces left on a crime scene, 3D scanning goes a long way in helping investigators to make their job easier. SCANTECH is striving to develop more targeted, innovative solutions adapted to diverse scenarios. 3D digitalization not only helps promote the accuracy and efficiency of forensic investigation, but it also brings convenience to the subsequent digital archiving and analysis processes. In addition, these sets of data can also be used in forensic teaching to enrich classroom materials and make teaching more relevant to real-world scenarios.

3D digitalization is a new technology. SCANTECH will work with its partners to deepen its exploration into requirements arising from frontline workers and strive to provide 3D digital solutions with greater portability, efficiency and accuracy.


For more cases about SCANTECH 3D scanning solution, please read below:

Paint Protection Film to Build Automobile Data Center by 3D Scanning

Accurate Measurement of Tesla Empowered by KSCAN 3D Scanner

How to Guarantee Molds Create High Quality Parts?

Digitize Giant Wind Turbine Hub with KSCAN 3D Scanner

Learn More

Get in touch with us to find out more about our products